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H O M O G E N E O U S  D E F O R M A T I O N  OF A C O N T I N U O U S  M E D I U M  

A. F. Revuzhenko UDC 539.37 

Most mathematical models used in continuum mechanics are of a phenomenological nature. This means 
that they are based on experimental data on deformation of one or another material. The question arises: 
What should these experiments be? In constructing a model, one can, in principle, use any experiments; for 
example, for solids, these are experiments on indentation of various kinds of punches. However, to interpret 
them, one has to advance a continuum model, to solve a boundary-value problem within the framework of this 
model, to compare the result with the experiment, to correct the model, etc. As a rule, considerable difficulties 
arise at the stage of solution of a boundary-value problem. Experiments for which calculations are simplified 
are more preferable, for example, experiments on torsion of thin-walled tubular specimens. And ideal are 
experiments whose interpretation does not require the solution of a boundary-value problem altogether. All 
stresses and strains are then determined immediately using the known boundary displacements and forces, 
whatever the rheology of the medium. 

The simplest example is all-around compression of a body by a pressure p. Let the body be shaped 
as a ball with radius R, the ball center be immobile, and u(R) be the radial displacement of the boundary. 
With some general restrictions, one can assert that the stress-tensor components are erii = P~ij (6ij is the 
Kronecker symbol), and the displacements are u(r) = u(R)r /R  (r is the distance from the center). Of course, 
using only all-around compression experiments is not sufficient. It is necessary to study more complicated 
loading programs. The problem therefore arises to describe all theoretically ideal methods of loading which 
could be applied to develop mathematical models of various media and also to find the parameters of these 
models. Let us pass to a more rigorous statement which allows us to reveal additional restrictions. 

1. Fo rmula t ion  of  t he  P rob lem.  In the general case, the deformation of a continuous medium is 
described by the closed system 

Oai----Zi + pX~ = p 
Ozj 

, ij = , % [ e k i ,   kt],  l,t = 
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u, ,=0 = g'(:,:,:), ,=0 = c i ( : ,  : ,  : ) .  (1.4) 

Here crij , eki , and ekt are the components of the stress tensor, strains, and strain rates; ui, vi, and pXi are the 
components of the displacement vectors, velocities, and mass forces; p is the density; St is the boundary of the 
region at moment t; fi, gi, and Gi are the boundary and initial conditions, xi are the Cartesian coordinates; 
x ~ are the coordinates of a material point at the initial moment of time. All subscripts take on the values 1, 
2, and 3. The constitutive equations (1.2) are written symbolically via the functionals Rij. 

System (1.1)-(1.4) is closed. Hence, if the data on at least one of them are not available, then the 
problem becomes indeterminate. Exceptional situations can, however, occur when information only on the 
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boundary conditions is sufficient to determine the kinematics of a medium. We shall substitute equalities (1.2) 
into (1.1) and obtain a closed system in terms of displacements. Clearly, the functionals Rij do not exert an 
effect on the kinematics only if the strain and strain-rate distributions do not depend on the spatial coordinates. 
In addition, the material should be homogeneous, and the mass forces, including inertial ones, should bc 
negligible. The homogeneity condition for strains leads to the following system of differential equations: 

dxi 
= a i l X l  + ai2x2 + a i3x3 ,  (1.5) dt 

where the coefficients aij depend only on time t. 
The solution of system (1.5) is representable in the form 

x (t) = b . x  ~ + ~ + ~ (1.6) 

The matrices B = (bij) and A = (aij) are interrelated: A = (dB/dt)B -t. 
It is easy to obtain conditions that are sufficient to realize the process (1.5). Let the deformed region be 

bounded by a closed surface S O at moment t ~ We shall specify on it the velocity vector according to equalities 
(1.5). Let the mass forces be absent, and the loading be of a quasi-static character. Inertial terms can hence 
be ignored, and there is no need for initial conditions. The solution is assumed to be unique. In particular, 
we exclude the theological instability [1, 2], shear localization, fracture, etc. If equalities (1.5) are satisfied at 
the boundary, they are satisfied inside the region as well. In other words, with the velocities specified at the 
boundary, the kinematics of deformation inside the region is the same for elastic, viscous, elastoviscoplastic. 
and any other materials. Formally, one can say that equalities (1.5) yield a set of universal solutions of system 
(1.1)-(1.4) for any types of governing equations. 

2. G e n e r a l  C lass i f i ca t ion  o f  H o m o g e n e o u s  Flows.  We shall analyze system (1.5). There are no 
particular difficulties in the construction of its solutions. Moreover, from the very beginning one can proceed 
from equalities (1.6) which yield one or another specific flow for any choice of the matr ix  B. The problem lies 
in another direction. The set of all affine flows (1.6) depend on nine scalar functions of one argument.  This is 
a fairly wide class. The problem is to narrow this class and to select from it the flows that  could be realized 
in practice. 

Let us go over to system (1.5). If one introduces, for the coefficients aij, the notation 

dxt dx2 
dt -- e l tx l  + (e12 - ~a)x2 + (e:a + 122)xa, dt - ' ~  (el2 q" ~'~3)Zl q" e22:;g2 + ($23 -- ~"~l)X3, 

dx3 (2.1) 
dt = (~t3 - f l2)xl  + (~23 + i l l )x2  + ~33x3, 

then one can say that  all elements of the medium are subjected to a complex loading. Here N = (f~t, f/2, fin} 
is the velocity of the rotation vector, and eij are, as before, the components of the strain-rate tensor. 

It should be noted that,  in this formulation, the superimposing of rotation is of a nontrivial character 
and affects considerably the kinematics as a whole. The role of rotation can be explained as follows. Let us 
assume that in the system of coordinates Oxtx2x3, a loading device which is switched on for time At impacts 
a body by the strains e0"At during this t ime interval. In addition, the principal axes of the strain-rate tensor 
are immobile (simple loading). Let us switch on the device for time At.  Each point of the specimen undergoes 
the corresponding displacements. After that,  we switch off the loading device and rotate, during the next time 
interval, the body as a rigid whole by an angle I~lAt about the vector ~ .  Again, the body receives the strains 
eiiAt, etc. As a result, we will come to a complex loading with continuous rotations of the strain tensor's axes 
(At --, 0). 

In [3], the author have studied a particular case where a simple shear was involved as a starting 
deformation (plane-parallel Couette flow). In [4], Ovsyannikov has constructed a class of exact solutions of 
the problem of the motion of an ideal fluid with a free boundary and a linear velocity field. Below, the general 
case (2.1) will be studied as a continuation of [3, 5]. 

Let us first confine ourselves to steady-state flows (aij = const). As is known, the character of solution 
of linear systems depends on the eigenvalues of the matrix A. In a three-dimensional space, at least one of them 
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is real. The particles that lie along their eigenvectors can move only along this vector: dx/dt = Ax = )~x, where" 
= const and x is the column (xi). Therefore, there are systems of coordinates in which either al3 = a23 = 0 

or a31 = a32 = 0 (el3 = ~2 and r = - ~ 1 ) .  We shall dwell on the second variant. Without  loss of generality. 
one can assume that ~12 = 0. Then, we have 

s = g l l X l  -- ~3X2 + 2f12X3, k2 = ~ 3 X l  4- ~22X2 -- 2~1x3, 23 ---- ~33X3- (2.2) 

The eigenvalues are $1,2 = e /2  4- (1/2) v/-D, )~3 = g33, where D = (r - g22) 2 - 4 ~  2 and r = ~11 + r 
According to (2.2), the particles that are in the plane z3 = 0 cannot leave this plane. In view of this, 

we shall first consider flow kinematics in this plane. Let us assume that at a certain moment all links between 
the particles in the medium break. And some effective mass forces begin to act as links. It is clear from (2.2) 
that, for z3 = 0, the components of these forces have the form 

$1 = (r - fl~)x, - r ~2 = eflaxl + (r - f~)x2.  (2.3) 

The kinematics now can be represented as the motion of a set of material particles in the field of forces (2.2) 
with the initial velocities &~ = r176 - fl3x ~ and ~:2 = ~3x ~ + r ~ One can readily see that the mass forces 
have a potential only for flae = 0. The case f13 = 0 corresponds to the biaxial tension (compression) along 
the fixed directions Ozl and Ox2. To the case e = 0 and ~3 -r 0 corresponds the central field of forces. 
The particle trajectories are either hyperbolas (D > 0) or ellipses (D < 0), or a set of parallel straight lines 
(D = 0). For e # 0, the indicated trajectories are deformed because of all-around compression or tension. 
The field of forces then loses its property of potentiality, and, in general, the material points either move off 
to infinity or infinitely approach the center. If )q = 0 or $2 = 0, then the straight line X2/Z 1 = g11/~-~3 is 
immobile. 

It is easy to understand how this plane pattern unfolds in space. Let us consider the orientation of the 
eigenvector which corresponds to As. We assume that As # A1,2. The eigenvector is then directed along the 
straight line 

f l l ~ s  - ~2(~22  - ~ss )  ~ 2 ~ s  + ~ l ( ~ n  - ess) 
Zl  : 2 (~11 --  ~33)(~22 - -  ~33) 4" ~'~i Z3, Z2 = 2 (r - -  r162 - -  ~33) 4" ~'~2 ~g3. (2.4) 

The latter equation in system (2.2) shows that the plane zs moves from the immobile plane zs = 0 according 
to the law zs(t)  = :c o exp(~sst). In this plane, the same pattern is observed as in the plane zs = 0. Here to 
the center Zl = 0, z2 = 0, and zs = 0 corresponds the point (2.4). 

Special cases are implemented only if at least one of the values of A1,2 tends to A3. The straight line 
(2.3) approaches the plane z3 = 0, and the transfer mechanism described above degenerates. 

Thus, we can give the following general classification of homogeneous flows. 
1. Discriminant D < 0. These are flows in which the material particles move around the center in 

elliptical trajectories; we call them elliptical flows. 
2. D > 0, )~3 -r ,~1, and As # A2. These are flows in which the particles travel along hyperbolic 

trajectories; we call them hyperbolic flows. 
3. D = 0. These are the remaining flows. 
We shall consider homogeneous flows from the point of view of the possibility of their realization. In 

this case, another classification is more important. Precisely as for a "phase fluid" [6], the flow is called finite if 
the particle trajectories lie in a limited region and infinite in the opposite case. In practice, one deals only with 
bounded regions. In a stat ionary regime, infinite flows can therefore be implemented only under the condition 
that a new material inflows and outflows through the boundary of the region. The processes in which the 
deformed specimen consists of one and the same material points are more convenient. In a stationary regime, 
this is possible only for finite flows: D < 0, ~33 ~< 0, and ell + r ~< 0. If a strict inequality is satisfied in 
at least one of the two above equations, the material undergoes compression which is virtually nonrealizable. 
For this reason, one should set r = "  0 and r + r ---- 0. After that,  it is necessary to choose an appropriate 
shape for the specimen (i.e., the surface 5'o), and to specify the velocity vector belonging to the class (1.5) at 
its boundary. 
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Let us consider a class of flows for which the surface So goes over into itself. This implies that  upon 
deformation the external configuration of the specimen remains unchanged. The  idea of this step is associated 
with simulation of the Earth 's  tidal deformation [7]. In the model of tidal waves, precisely this situation was 
realized and proved to be appropriate  for practical implementat ion.  

The general description of affine flows of a similar type can be obtained as follows. Let us introduce 
a new system of coordinates Oyly2y3 and fix in it a body of revolution bounded by the  surface S*. We shall 
map S* onto the coordinate system Ox~x2x3 by the following affine transformation: 

xx = kaya, x2 = k2y2, x3 = kay3. (2.5) 

Deformation (2.5) is called the start ing deformation. As So, we choose an image of S* in the coordinates 
OXlX,2X 3. We now force the preimage of S* to rotate about the axis of symmetry  at each moment  of t ime 
and perform the t ransformation (2.5). Since the surface S* goes over into itself, the surface S o preserves this 
property. Clearly, the internal points of the region S o undergoes the affine deformation.  Let us determine its 
parameters.  Let the rotat ion velocity w = { ~ 1 , ~ 2 , ~ 3 }  be constant.  In the coordinate system Oyi, we then 
have 

yl --- -w3y2 + w2y3, y2 = W3yl - Wly3, y3 = -oa2yl + Wly2. (2.6) 

Differentiating (2.5) with respect to time, using (2.6), and replacing yi by xiki, we obtain 

klw2 k2w3 k2wl k3w2 k3~o! 
k l ~ 3  x2  + T - - X 3 ,  -~2 = xt -- ~ z 3 ,  k3 = - - - x l  + x2. (2.7) 

2:1 = -  k-"~ x3 kl k3 ks - ~ 2  

Here the eigenvalues are AI,2 = +i~/w~ +w22 +ws  2, A3 = 0. Hence, the class of flows (2.7) coincides with 
the above class of finite flows of the type e33 = 0 and '11 + ~22 = 0. [Evidently, the  variables zi in equalities 
(2.2) and (2.7) refer to different coordinate systems, l The  representation of the flows (2.2) in the form of (2.7) 
allows one to use t ransformations (2.5) and (2.6) as an algori thm for choosing the shape of the specimen and 
the program of its loading. Let us now pass over to analysis of particular flows. 

3. P l a n e  P lows .  Let us assume that  the rotation is performed about the axis Ox3, i.e., fll = ~2 = 0. 
The  guide line (2.4) becomes vertical, and deformation on the  whole becomes plane. We shall consider elliptic 
flows of the type D < 0, e l l  + ~22 = 0. As a preimage of the  body, we select a right circular cylinder and 
subject it to biaxial compression in the  directions orthogonal to the  generatrix. As a result, the cylinder 
becomes elliptic but  remains a right one. Rotat ion of the  preimage about the axis of symmet ry  produces the 
plane elliptic flow: 

x.1 = k z l  - ~3z2, a:2 = n3Xl - kz2 (k = ~11 = -e22),  (3.1) 

to which corresponds the  central field of effective mass forces possessing a potential .  Therefore, the law of 
revolution of material  particles around the center is Kepler's law: 

v n  = 0; Iv x r[ = fin(x~ 2 =cons t .  (3.2) 

Here n is the normal to the boundary,  r is the radius-vector drawn from the origin of coordinates, and v is the 
velocity vector. For definiteness, we take a material point  with the initial coordinates (z ~ 0). The  boundary 
of the region coincides with the trajectory of the point (z ~ 0) and is an ellipse with semiaxes 

F~3 b = z (3.3t 
a = x  Q 3 - k '  Q 3 + k "  

The ellipse's axes are directed along the bisectors x2 = -t-xl. Hence, if the Kepler's velocity distribution is 
specified at the boundary  of the elliptic region, then only a uniform strain and stress distribution can exist 
inside the region. Moreover, the loading should be fairly slow to avoid inertial effects. 

Any similar requirements can be met  only approximately. The  question therefore arises as to how the 
flow (3.11 changes if the inertial effects become pronounced.  It is impossible here to obtain results which 
are not dependent  on the rheology of the medium. Let us consider the case of a linearly viscous fluid. As 
usually, we shall introduce nondimensional  variables keeping for them the notat ion of dimensional ones. We 
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have derived equalities _(3.2) as a corollary of (3.1). Now the formulation is different. It is necessary to treat 
equalities (3.2) and (3.3) as the prespecified boundary conditions. The boundary-value problem is formulated 
for stationary Navier-Stokes equations: 

Op ( Or: Or: "~ 
AVl Oxl Re ~vl ~ + v20x2] 

Op _ R e  vl +v2 + = 0 ,  

where p is the pressure and Re is the Reynolds number. The exact solution of problems (3.2)-(3.4) has the 
form 

Vl : kXl  -- ~"~3Z2, Y2 = 113Xl -- kx2, p = pO + Re ~t~ - k s 2 (d + d),  (3.5) 

where p0 is an additive constant. The form of the solution of (3.5) will not change if the boundary conditions 
(3.2) are set on the hyperbolas (113 < k) or on a couple of parallel straight lines (113 = k, Couette flow). It is 
clear from (3.5) that the constant-pressure curves are circles. The pressure increases with distance from the 
center for elliptical flows and decreases for hyperbolic ones, while, for the Couette flow, it remains constant. 
The solution also shows that the inertial forces are completely compensated by the pressure gradient. That is 
why the flow kinematics does not depend on inertial forces. This conclusion remains true for any Re values. 
However, an additional question arises concerning the stability of the flow (3.3) with increasing Re. It is known 
that, for plane-paxallel Couette flow (Ft3 ~ k and a ---* co), stability is preserved against any disturbances [8]. 
A similar result is likely to occur also for elliptic flows with the Kepler boundary conditions. 

Thus, solution (3.5) illustrates a flow in which specifying the boundary conditions for velocities 
guarantees a definite flow kinematics which is not dependent on Re. Naturally, the question arises whether 
there axe other flows with this property. 

The problem can be formulated as follows: it is necessary to describe a class of flows satisfying system 
(3.4) with the field of velocities Vl and v2 independent of Re (of course, the pressure is Re-dependent). We 
differentiate the first two equations with respect to the parameter  Re and use the conditions Ovi/ORe = O. 
As a result, we obtain two new equations 

Ov: Ov: OQ Ov2 Ov2 OQ (3.6) 
,,1 + = ,,1 + ,,2 0, 2 = 0 2" 

Here Q = -Op/O Re. The opposite situation is easy to show: if the field of inertial forces has the potential 
(3.6), the flow kinematics is not dependent on Re. We introduce the stream function ~: 

00  0~  
Vl = 0 X 2 '  t~2 = 0 X l "  

Let us exclude the variables p and Q. As a result, we obtain the redeterminated system 

0q~ 0Ar  0r 0Aq, 
A A ~  = 0, Ox: Ox2 0z20x-----~ = 0. (3.7) 

The meaning of the equations is absolutely clear. The assumption of the nondependence of the kinematics on 
Re also incorporates the limiting cases where Re ~ 0 and Re ---* co. To the case Re ---* 0 corresponds the first 
equation in (3.7), i.e., the creeping approximation, and to Re ~ co corresponds the second equation in (3.7), 
the properties of a viscous fluid becoming close to those of an ideal fluid. We introduce a complex variable 
z = Xl + ix2. The general solution of the first equation of (3.7) can then be represented as (Goursat 's formula 
[9]) 

2~ = ~ + z + z~ + 2, (3.8) 

where ~(z) and X(z) are arbitrary analytical functions of argument z. Substitution of (3.8) into the second 
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equation of (3.7) yields the equation 

Im[~o"(~0 + z@'+ r = 0 (r = X'). (3.9) 

Equality (3.9) gives a comprehensive description of a class of flows in which the kinematics is not 
dependent on Re. In particular, we can obtain a plane elliptic flow with the Kepler boundary conditions at 
the boundary if we set ~"(z) = 0 and r = kz. 

4. Spa t i a l  Flows.  The search for spatial flows which are suitable for realization is more easy to perform 
by means of the algorithm (2.5)-(2.7). Let us choose a body shaped as a right circular cylinder. We set into 
correspondence to it another body which has the same shape but was subjected to shear strain. The shear 
was performed in such a way that  the cylinder bases remained circular. We rotate the preimage about the 
axis of symmetry with a certain constant angular velocity 0. Deformation of the image can then be described 
by the relations 

v l = T x 2 + O x s ,  v2=O, v s = - O x l ,  7 , 0 = c o n s t .  (4.1) 

According to (4.1), the bases of an oblique cylinder rotate as rigid ones with the same constant angular velocity 
0 and so do all the body's cross sections parallel to the bases. In [5], the author described the realization of 
(4.1) and gave experimental data on the deformation of bulk material. 

Next, we perform another type of shear of the preimage - -  along the axis of symmetry. Its lateral 
surface remains circular cylindrical, while the bases become ellipses (see Fig. 1). The rigid rotation of the 
preimage produces the following uniform deformation process: 

Vl = 7x2, v2 = -~/x3, v3 -- l'lx2. (4.2) 

All trajectories of the material particles are ellipses which are formed in cutting a circular cylindrical surface 
by planes parallel to the bases. The law of particle revolution around elliptic orbits is the Kepler law: the 
particle radius vector covers equal areas for equal periods. The orbit plane constitutes a constant angle with 
the plane Ox2x3. Therefore, the projection of a material point onto the Oz2x3 plane moves in a circle with 
a constant angular velocity. This circumstance can be used in constructive implementation of the Kepler 
boundary conditions. 

A class of loadings of the type of (2.7) exhibits one interesting property. Let us choose an S~ 
specimen in a natural free state and transform it into S* according to the law (2.5). To this transformation 
correspond some invariants of the strain tensor. Subsequent loading should be performed according to the 
program (2.7). It is easy to show that this loading leads only to rotation of the principle axes of the strain 
tensor, while the values of the tensor invariants remain unchanged. Thus, in this case, a special type of neutral 
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loading with continuous rotation of the strain tensor's axes occurs. In the case of (4.1), the first principal 
direction rotates uniformly in the plane Oxlx3, while two others describe conic surfaces so that the angle 
between each of them and the plane Ozlx3 remains constant. In the case of (4.2), a similar picture occurs 
relative to the plane Ox2z3. 

We now consider the role of inertial effects for spatial flows. Let, as previously, the velocity distribution 
(2.1) be specified at the boundary of a certain region. The flow is assumed to be of a steady-state character. 
but inertial forces are not negligible. The question arises as to which additional conditions should be adopted 
for the strain and strain-rate distributions to remain, as before, homogeneous. Just as in the plane case, it is 
easy to show that the incompressibility condition of the medium is here a decisive one. 

We assume that the constitutive equations of a medium depend only on the stress-tensor deviator. In 
other words, the additive hydrostatic pressure has no effect on the kinematics of the medium. For affine flows 
of similar media, the nonuniformity of the pressure can be assumed. In this case, the inertial forces should be 
completely compensated by the pressure gradient. The latter is equivalent to the existence of the potential of 
inertial forces. 

We shall write relations of the form of (3.6) for the three-dimensional case, excluding the potential and 
replacing the velocities by relations (2.1). After simple manipulations, we obtain the following homogeneous 
system: 

- - ( g22  -1" e33)~"~1 -1" g12~'~2 Jr" g13123 : 0,  g12~"~l - -  ( g l l  "1- g33)~'~2 n u g23~"~3 = 0, 
(4.3) 

g 1 3 ~ l  + g 2 3 ~ 2  --  ( g l l  -[- g22)123 ----- 0. 

The nontrivial solutions of the system allows one to describe flows that preserve their uniform character not 
only under quasi-static loading, but also when inertial forces become pronounced. Let the vector of rotation 
12 r 0. We direct it along the axis Oz3. Then 121 = 122 = 0. Relations (4.3) produce e13 = ~23 = 0 and 
~ l l  "4-~22 ---- 0. From the incompressibility condition, it follows that  e33 = 0 as well. This result implies that 
the flow should be plane, i.e., for f t r  0, there are no spatial noninertial flows. 

Let f t  = 0. Equations (4.3) are then satisfied for any eq. Thus, any homogeneous flow in which the 
principle axes of the strain-rate tensor do not rotate around material volumes is not dependent on inertial 
forces. 

5. N o n s t a t i o n a r y  F lows.  In many cases, it is necessary to study loadings with broken trajectories. 
cyclic shears, etc., which is possible only in nonstationary regimes. Formally, this means that,  in Eqs. (2.1), it 
is necessary to admit the t ime dependence of the coet~cients. The variety of unsteady-state flows is much richer 
than that of steady-state ones. The classification considered, however, allows one to describe also the most 
important unsteady-state flows. We shall consider the mappings (2.5) and (2.6). Let us rotate the preimage 
S 0 about the symmetry  axes according to an arbitrary program, admitting a variable velocity and variable 
directions of rotation, etc. It is evident that, just as in the steady case, the surface S* goes, as before, over 
to itself; correspondingly, the specimen surface S 0 also goes over to itself. The material inside the region 
undergoes an affine unsteady deformation. A general description of the flows of this class can be obtained if 
one uses a sphere as a preimage S*. The sphere can be rotated around the center by any program. Here the 
surface of the sphere S* and, hence, its image S ~ will go over to itself. 

One can indicate another method of producing unsteady flows. Let (1.6) be the solution of some 
unsteady equations (1.5). The coefficients bij depend on the time t. We assume t to be not the time but the 
loading parameter which depends on the physical time r: t = t(r). No limitations are imposed on the monotone 
character of the function t(r). This interpretation requires stricter conditions on the rate of quasi-static 
loading, but permits one to expand the class of homogeneous flows that are appropriate for implementation. 
In particular, in this formulation, one can use flows that are infinite relative to t. For example, a simple shear 
(Couette flow) is infinite relative to t. However, if we adopt the dependence t = sin r ,  the shear relative to r 
becomes infinite, and loading becomes cyclic. 

In conclusion, we would like to note the following circumstance. The practical realization of any ideal 
requirements is always of an approximate character. It is impossible to avoid perturbations associated with 
the effect of inertial forces, the inaccuracy in the implementation of boundary conditions, etc. In some cases, 
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such deviations give rise to new effects which are of independent interest [5, 7]. 
6. Conclus ions .  
1. The loading methods that ensure a uniform stress-strain distributions in a medium have been 

completely described. Such methods are ideal for setting up experiments to study the constitutive equations 
for various media. 

2. We have indicated the loading methods that can be used for the study of complex rheological media 
and also for powdered and loose materials. The cases where inertial forces have no effect on the homogeneous 
character of flow have been considered. 

This work was supported by the Russian Government and International Science Foundation (Grant 
No. NPD300). 
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